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Abstract

A representation invariant is a property that holds of all
values of abstract type produced by a module. Representa-
tion invariants play important roles in software engineer-
ing and program verification. In this paper, we develop a
counterexample-driven algorithm for inferring a represen-
tation invariant that is sufficient to imply a desired spec-
ification for a module. The key novelty is a type-directed
notion of visible inductiveness, which ensures that the algo-
rithmmakes progress toward its goal as it alternates between
weakening and strengthening candidate invariants. The al-
gorithm is parameterized by an example-based synthesis
engine and a verifier, and we prove that it is sound and
complete for first-order modules over finite types, assuming
that the synthesizer and verifier are as well. We implement
these ideas in a tool called Hanoi, which synthesizes rep-
resentation invariants for recursive data types. Hanoi not
only handles invariants for first-order code, but higher-order
code as well. In its back end, Hanoi uses an enumerative
synthesizer called Myth and an enumerative testing tool as
a verifier. Because Hanoi uses testing for verification, it is
not sound, though our empirical evaluation shows that it is
successful on the benchmarks we investigated.

CCS Concepts: · Software and its engineering → Soft-

ware verification and validation; · Theory of computa-

tion → Invariants.
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1 Introduction

A representation invariant is a property that holds of all val-
ues of abstract type produced by a module. For instance, a
module that implements a set using a list might maintain
a no duplicates or is sorted invariant over the lists. Module
implementers can rely on the invariant for correctness and
efficiency and must ensure that it is maintained by each
function in the module. Making representation invariants
explicit has a number of software engineering benefits: they
can be used as documentation, dynamically checked as con-
tracts [9, 16], and used for automated testing [3, 6].
Representation invariants also play a key role in modu-

lar verification of software components. Consider a mod-
ule that implements sets; its specification φ might demand
that (lookup (insert s i) i) return true for all sets s and
items i. A standard way to prove such a specification [1] is
in two steps: 1) prove that a predicate I is a representation
invariant of the module; and 2) prove that I is stronger than
φ, i.e., all module states that satisfy I also satisfy φ. In other
words, modular verification can be reduced to the problem
of synthesizing a sufficient representation invariant.
In this paper, we develop an approach to automatically

infer a sufficient representation invariant given a pure, func-
tional module and a specification. To our knowledge, the
only prior work to tackle this problem [15] builds candidate
invariants out of a fixed set of atomic predicates and provides
no correctness guarantees. We address both of these limi-
tations through a form of counterexample-guided inductive

synthesis (CEGIS) [28, ğ5], which consists of an interaction
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between two black-box components: (1) a synthesizer that
generates a candidate invariant consistent with given sets
of positive and negative examples, (2) a verifier that either
proves that a candidate is a sufficient representation invari-
ant or produces a counterexample, which becomes a new
example for the synthesizer.
Our approach is inspired by recent work in data-driven

inference of inductive invariants in other settings [7, 21,
25, 31]. As in that work, a key challenge is how to handle
inductiveness counterexamples, pairs of module states ⟨s, s ′⟩
such that s satisfies the candidate invariant, some module
operation transforms state s to state s ′, but s ′ does not satisfy
the candidate invariant. The problem is that there are two
ways to resolve such counterexamples and it is not clear
which is correct: treat s as a new negative example or treat
s ′ as a new positive example.

We observe that if s is a constructible state of the module,
meaning that it is reachable by a sequence of module opera-
tions, then s ′ must be as well. Therefore, any representation
invariant will include both states, so we must treat s ′ as a
new positive example. Based on this observation, we define
a candidate invariant I to be visibly inductive on a module
relative to a set S of known constructible states if every mod-
ule operation produces a state satisfying I when invoked
from a state in S . For each candidate invariant, we first it-
eratively weaken it until it is visibly inductive relative to
the current set of known constructible states, in the process
adding new states to this set, and only then do we consider
other inductiveness violations. Intuitively, this approach ea-
gerly identifies and exploits inductiveness counterexamples
for which no łguessingž is required.
We have formalized a general notion of inductiveness as

a type-indexed logical relation, of which both our notion
of visible inductiveness and the traditional notion of (full)
inductiveness are special cases. We have also formalized our
overall algorithm using this notion. We have proven the
algorithm sound and complete when the module contains
first-order code and the implementation of the abstract type
is a finite domain, provided the underlying synthesizer and
verifier are also sound and complete.

We have implemented our algorithm in OCaml and call
the resulting toolHanoi. To instantiate the synthesis compo-
nent of the system, we use Myth [20], a type- and example-
directed synthesis engine.Myth is capable of synthesizing
invariants over recursive data types in many cases, so it is a
good fit for tackling proofs about modules that implement
recursive data types, which are the focus of our benchmarks.
To instantiate the verification component, we use a form
of enumerative test generation. Despite the unsoundness
of this underlying verifier, our experimental results show
that Hanoi still infers sufficient representation invariants in
practice. Such likely representation invariants can be used
by module implementers and verifiers for many purposes.

We have also implemented extensions that allow Hanoi

to be used with higher-order code. Here, the main chal-
lenge comes in how to extract counterexamples from higher-
order arguments. It turns out that our first-order scheme
for extracting counterexamples is essentially an applica-
tion of a first-order contract that guards and logs values
passing through the first-order interface. The solution to
counterexample-extraction from higher-order code then is
to implement higher-order contracts [9] that guard and log
values across this higher-order interface.

To evaluate our tools, we constructed a benchmark suite
that includes 28 different modules, including a variety of
modules over lists and trees, many drawn from Coq libraries
and books [1]. We find that Hanoi is able to synthesize 22
of these invariants within 30 minutes.
To summarize, the main contributions of this work are:

• An algorithm for automated synthesis of representation
invariants, parameterized by a verifier and synthesizer.

• A formalization of the algorithm and the key notion of
visible inductiveness, over a first-order type theory. We
prove soundness and completeness in the case of finite
domains, if the given verifier and synthesizer are sound
and complete.

• An extension of the algorithm capable of extracting coun-
terexamples from higher-order interfaces.

• Implementation, optimization and evaluation of a tool
called Hanoi that synthesizes invariants over recursive
data types, using an unsound, enumerative testing engine
for verification.

2 A Motivating Example

In this section, we give a high-level overview of Hanoi using
an example. Consider the interface SET:

1 module type SET = sig

2 type t

3 val empty : t

4 val insert : t -> int -> t

5 val delete : t -> int -> t

6 val lookup : t -> int -> bool

7 end

The interface declares an abstract type t and a number of
functions that operate over t. Figure 1 shows a module
ListSet that implements the SET interface, using int list

as the concrete type.
We study the problem of verifying that ListSet satisfies

some standard properties of sets. An example specification
follows.

(φ s) ≜ ∀i : int .

¬ (lookup empty i)

∧ (lookup (insert s i) i) ∧ ¬ (lookup (delete s i) i)
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1 module ListSet : SET = struct

2 type t = int list

4 let empty = []

6 let rec lookup l x =

7 match l with

8 | [] -> false

9 | hd :: tl -> (hd = x) || (lookup tl x)

11 let insert l x =

12 if (lookup l x) then l else (x :: l)

14 let rec delete l x =

15 match l with

16 | [] -> []

17 | hd :: tl -> if (hd = x) then tl

18 else (hd :: (delete tl x))

19 end

Figure 1. A module that implements SET using lists.

Note that this specification does not hold for arbitrary inte-
ger lists. For example, (lookup (delete [1;1] 1) 1) returns
true. Nonetheless, the ListSet module is a correct imple-
mentation of the SET interface, because the specification
holds for all values of the abstract type t that the module
can actually construct. Such values are usually called the
representations of the abstract type t. To emphasize that such
values can be constructed by execution of module operations,
we say a value v is constructible at type τ whenever a client
with access to the module can produce v at the type τ .

A standard approach [1] to prove that a module implemen-
tation satisfies such a specification is to identify a sufficient

representation invariant. In our example, such an invariant
for ListSet is a predicate I⋆ : (int list → bool) that is

• sufficient for φ, i.e. ∀s : int list . (I⋆ s) =⇒ (φ s), and
• whenever operations of ListSet module are supplied
with argument values of abstract type that satisfy the
invariant, they produce values of abstract type that satisfy
the invariant, i.e., the module is inductive with respect to
the invariant.

In other words, I⋆ contains all integer lists that are repre-
sentations of type t, and is contained in the set of integer lists
that satisfy φ. Figure 2 shows this relationship pictorially.
For ListSet, the predicate demanding an integer list has

no duplicates is a sufficient representation invariant for φ.
Our tool Hanoi automatically generates that invariant:

1 let rec I⋆ : int list -> bool = function

2 | [] -> true

3 | hd :: tl -> (not (lookup tl hd)) && (I⋆ tl)

2.1 Overview of Hanoi

Given a module, an interface and a specification, Hanoi em-
ploys a form of counterexample-guided inductive synthesis

(CEGIS) [28, ğ5] to infer a sufficient representation invariant.

V+ = a set of known constructible values I = a candidate invariant

φ

I⋆

I
R

V+

x

yz

z is a sufficiency counterexample: (I z) ∧ ¬ (φ z)
⟨x , y ⟩ is an inductiveness counterexample: (I x ) ∧ ¬ (I y)

Figure 2. A sufficient representation invariant I⋆ implies
the spec and is an overapproximation of the set of represen-
tations R of the module’s abstract type.

Specifically, we use a generate-and-check approach that iter-
ates between two black-box components: (1) a synthesizer
Synth that generates a candidate invariant, which is a predi-
cate that separates a setV+ of positive and a setV− of negative
examples, and (2) a verifier Verify that checks if a candidate
invariant satisfies the desired properties and otherwise gener-
ates a counterexample. CEGIS has been successfully applied
to other forms of invariant inference [7, 21, 25, 31].

We illustrateHanoi and its key challenges via our running
example. Initially the V+ and V− sets are empty, so suppose
that Synth generates the candidate invariant fun _ -> true.
This invariant is inductive, but not sufficient. Hence Verify
will provide a counterexample, for instance [1;1], which is
an integer list that satisfies the candidate invariant but not
the specification φ (see z in Figure 2). As the final invariant
must imply φ, [1;1] is added to V−, which forces Synth to
choose a stronger candidate invariant in the next round.
The main challenge in using this approach is the need

to handle counterexamples to inductiveness. For instance,
suppose that at some point during the algorithm we have
V+ = {[], [3]} andV− = {[1;1]}, and suppose Synth gener-
ates the following candidate invariant:

1 let I : int list -> bool = function

2 | [] -> true

3 | hd :: _ -> hd <> 1

This candidate is not inductive over the ListSetmodule. For
instance, [0] satisfies the candidate, but (insert [0] 1) =

[1;0] does not. Hence the pair ⟨[0], [1;0]⟩ constitutes an
inductiveness counterexample (see ⟨x,y⟩ in Figure 2). Resolv-
ing such an inductiveness counterexample requires ensuring
that either both x and y satisfy the candidate invariant or
that neither does. This leads to two possibilities, and the
problem is that it’s unclear which one is correct:

• add [0] to V− so that it will be excluded from the next
candidate invariant

• add [1;0] to V+ so that it will be included in the next
candidate invariant

However, observe that if ⟨x,y⟩ is an inductiveness coun-
terexample and x is known to be constructible, then y is
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constructible as well. Since a representation invariant must
include all constructible integer lists, there is no choice to
make in this case: we must add y to V+.
Based on this observation, our algorithm maintains the

property that all elements of V+ both satisfy the current
candidate invariant and are known to be constructible. To
verify inductiveness of a candidate invariant, we first check a
property that we call visible inductiveness, which informally
requires that there are no inductiveness counterexamples
⟨x,y⟩ such that x ∈ V+. If such a counterexample exists, we
add y to V+, ask Synth for a new candidate invariant, and
re-check visible inductiveness on the updated V+.

In our running example, the candidate invariant I shown
above is not visibly inductive, so Verify would produce a
counterexample, for instance ⟨[], [1]⟩. Unlike the case for
the counterexample ⟨[0], [1;0]⟩ shown earlier, by construc-
tion the first element of this new pair is in V+, so we know
that we must add [1] to V+. We then re-check visible induc-
tiveness, continuing in this way until the candidate invariant
is visibly inductive on V+.
At that point, we check full inductiveness. Because I is

visibly inductive with respect to V+, any counterexample to
full inductiveness is a pair ⟨x,y⟩ where x is not in V+. In
this case, in order to maintain the invariant that V+ only
contains constructible values we resolve the counterexample
by adding x toV−. So in general, the elements ofV− all falsify
the current candidate invariant, but they may or may not be
constructible. With this new negative example, Synth will
produce a stronger candidate invariant. We then restart the
process all over again, first weakening this new invariant to
be visibly inductive and then strengthening it to be inductive.

In ğ3.4 we show that despite this interplay between weak-
ening and strengthening, Hanoi is sound and complete over
finite domains if Verify and Synth are sound and complete.
That is, if a sufficient representation invariant exists then
Hanoi will produce one.

The question of how to handle inductiveness counterexam-
ples arises in prior work on data-driven invariant inference.
Some of this work also observes that if x is constructible in
an inductiveness counterexample ⟨x,y⟩, then so is y [25, 31].
However, those approaches only leverage this observation
opportunistically, when a counterexample to full inductive-
ness happens to satisfy it. In contrast, we define the notion of
visible inductiveness and use this notion to eagerly weaken a
candidate invariant until no such counterexamples exist. We
demonstrate empirically in Section 5 that our eager search
for visible inductiveness counterexamples provides perfor-
mance benefits. We also prove a completeness result for our
approach in the context of finite domains, which those prior
approaches lack. To our knowledge, the only prior CEGIS-
based approaches to inductive invariant inference that have
a completeness result depend upon special-purpose synthe-
sizers that directly accept inductiveness counterexamples in
addition to positive and negative examples [7, 10].

2.2 Handling Binary Functions

Consider the following extension to our SET interface, which
exposes additional functions for set union and intersection:

1 module type ESET = sig

2 include SET

3 val union : t -> t -> t

4 val inter : t -> t -> t

5 end

Consider an extension of the ListSet module that sup-
ports these functions (implementation not shown in the in-
terest of space). When verifying inductiveness, an inductive-
ness counterexample on either union or inter is now a triple
⟨x1, x2,y⟩. This increases the number of possible ways to re-
solve the counterexample to four: (1) add x1 to V−, (2) add x2
to V−, (3) add both x1 and x2 to V−, or (4) add y to V+. More
generally, the number of choices grows exponentially in the
number of arguments to the function that have type t.
Hanoi naturally extends to this setting: By construction,

a counterexample to visible inductiveness due to union or
inter will be a triple ⟨x1, x2,y⟩ where x1 and x2 are inV+, so
as before we add y to V+. On the other hand, a counterexam-
ple to inductiveness due to union or inter will be a triple
⟨x1, x2,y⟩ where at least one of x1 and x2 is not in V+. In this
case, we simply add each xi that is not in V+ to V−.
Hanoi handles n-ary specifications in a similar manner.

For instance, wemaywant to prove that amodule implement-
ing the ESET interface satisfies the following specification:

(φ ′ s1 s2) ≜ ∀i : int .

((lookup s1 i) ∨ (lookup s2 i)

=⇒ (lookup (union s1 s2) i))

∧ ((lookup s1 i) ∧ (lookup s2 i)

=⇒ (lookup (inter s1 s2) i))

If a candidate invariant is not strong enough to imply this
specification, then a counterexample will consist of a pair
⟨x1, x2⟩ where at least one of x1 and x2 is not in V+. In this
case, we again add each xi that is not in V+ to V−.
Our algorithm remains sound and complete for finite do-

mains in the presence of these extensions, assuming the
verifier and synthesizer are as well.

3 The Inference Algorithm

In this section, we describe our algorithm formally and char-
acterize its key properties.

3.1 Preliminaries

Our programming language is a first-order variant of the
simply-typed lambda calculus with functions, pairs, a base
type (β) and a single designated abstract type (α ). The syn-
tax of 0-order types (σ ), 1st-order types (τ ), values (v) and
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expressions e are provided below.

(0-types) σ F β | α | (σ ∗ σ )

(1-types) τ F σ | σ → τ | (τ ∗ τ )

(values) v F w | ⟨v1,v2⟩ | (λx : σ . e)

(expressions) e F x | v | (πi e) | (e1 e2)

We use x for value variables and w for constants of the
base type β . The expression (πi e) is the i

th projection from
the pair e . We write Γ ⊢ e : τ to indicate that an expression
e has type τ in the context Γ, which maps variables to their
types. We write ⊢ e : τ when Γ is empty, as will be the case
in most of this work. We write τ [α 7→ τc ] to substitute τc for
α in τ . Finally, and we use e ⇓ v to indicate that e evaluates
to v . We refer the reader to Pierce [22] for the details.
We assume a module defines a single abstract type (α ),

which is declared in its interface. A module interface (F =
∃α . τm ) is a pair of a name (α ) for the abstract data type and
a signature τm that specifies the types for operations over
the abstract type. A module implementation M = ⟨τc ,vm⟩

is the classic existential package of a concrete type τc and
a value vm containing operations over the type τc . We say
a module ⟨τc ,vm⟩ implements an interface ∃α . τm when it
is well-typed as per the usual rules for existential introduc-
tion [22, ğ24], i.e. ⊢ vm : τm[α 7→ τc ].
In addition to an interface, we also assume the existence

of a target specification φ, which captures the desired cor-
rectness criteria for a module implementation. These specifi-
cations are universal properties of the values of the abstract
type; we formalize them as polymorphic functions over the
module operations, i.e., φ : ∀α . (τm → α → bool). We saw
an example specification for integer sets in ğ2.
The values of an abstract type α are simply the values

that are constructible at type α through the module interface.
Below we define the notion of a τ -constructible value and
then use it to define when a module satisfies a specification.

Definition 3.1 (τ -Constructible Value: CM [v ;τ ]). A value
v is τ -constructible using M, denoted CM [v ;τ ], iff there
exists a function f : ∀α . (τm → τ ) such that (f [τc ] vm) ⇓ v .

Definition 3.2 (Specification Satisfaction: M : F |= φ). A
moduleM with interface F is said to satisfy a given specifi-
cation φ, denoted M : F |= φ, iff every α-constructible value
satisfies φ, i.e. ∀v : τc .CM [v ;α] =⇒ (φ[τc ] vm v).

3.2 Representation Invariants

Loosely speaking, a representation invariant is a property
that is preserved by operations over the abstract type of a
module. As such, we say that a representation invariant is
a fully inductive property of a module. The first part of Fig-
ure 3 defines a relation that we call conditional inductiveness,
which is a generalization of both full inductiveness and the
notion of visible inductiveness described earlier. Specifically,

the relation v : τ ▶P
Q Valid may be read as łvalue v is con-

ditionally inductive at type τ with respect to properties P
and Q .ž

Full inductiveness. When P andQ are the same property
I (i.e., P = Q = I ) , these rules correspond to the standard
logical relation over closed values for System F [27], but
where there is exactly one free type variable (α ) and that
type variable is associated with the concrete type τc and
the unary relation I . Values of the abstract type α are in
the relation if they satisfy I (rule I-A). Products satisfy the
relation if their components satisfy the relation (rule I-Prod).
Functions satisfy the relation if they take arguments in the
relation to results in the relation (rule I-Fun).

The following corollary of Reynolds’ theory of parametric-
ity [23] says that if I is a representation invariant then all
α-constructible values satisfy it.

Corollary 3.3.

vm : τm ▶
I
I

Valid =⇒ (∀v : τc .CM [v ;α] =⇒ (I v))

Therefore, to prove that a module meets a specification it is
enough to identify a sufficient representation invariant.

Definition 3.4 (Sufficient Predicate: Suf
φ

M
[p]). A predicate

p : (τc → bool) is sufficient for proving that M satisfies φ,
denoted Suf

φ

M
[p], iff ∀v : τc . (p v) =⇒ (φ [τc ] vm v).

Definition 3.5 (Sufficient Representation Invariant). Apred-
icate I : (τc → bool) is called a sufficient representation
invariant for a module M with respect to a specification φ,

denotedM : F |=I φ, iff Suf
φ

M
[I] ∧ vm : τm ▶

I
I

Valid.

Theorem 3.6. If a sufficient representation invariant exists,

then the module satisfies the specification, i.e.
(

∃I : (τc → bool) .M : F |=I φ
)

=⇒ (∀v : τc .CM [v ;α] =⇒ (φ [τc ] vm v))

Proof. Follows from Corollary 3.3, Definition 3.4, and Defini-
tion 3.5. □

Conditional inductiveness. When P and Q are not the
same, conditional inductiveness informally requires that if
the client supplies values of abstract type satisfying P then
the module will produce values of abstract type satisfying
Q . When conditional inductiveness is used to check visible
inductiveness in our algorithm, P will be the set V+ of ex-
amples that are known to be α-constructible by the module
andQ will be a candidate representation invariant. The most
interesting rule when P and Q are different is the I-Fun rule
for functions. Specifically, notice the inversion of P andQ in
the negative position: If the argument is a value of abstract
type, it must satisfy P , notQ . In other words, this element of
the formalism codifies the intuition that if the client supplies
values that satisfy P then the module will supply values that
satisfy Q .

5
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w : β ▶PQ Valid (I-B)
⊢ v : τc (Q v)

v : α ▶PQ Valid
(I-A)

v1 : τ1 ▶
P
Q Valid v2 : τ2 ▶

P
Q Valid

⟨v1,v2⟩ : (τ1 ∗ τ2) ▶
P
Q Valid

(I-Prod)

⊢ v : (σ1 → τ2) [α 7→ τc ] ∀v1 .∀v2 .
(

v1 : σ1 ▶
Q
P

Valid ∧ (v v1) ⇓ v2 =⇒ v2 : τ2 ▶
P
Q Valid

)

v : (σ1 → τ2) ▶
P
Q Valid

(I-Fun)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊢ v : τc ¬ (Q v)

v : α ▶PQ CEx ⟨{}, {v}⟩
(I-A-CEx)

v1 : τ1 ▶
P
Q CEx ⟨S,V ⟩ ⊢ v2 : τ2[α 7→ τc ]

⟨v1,v2⟩ : (τ1 ∗ τ2) ▶
P
Q CEx ⟨S,V ⟩

(I-Prod-CEx1)
⊢ v1 : τ1[α 7→ τc ] v2 : τ2 ▶

P
Q CEx ⟨S,V ⟩

⟨v1,v2⟩ : (τ1 ∗ τ2) ▶
P
Q CEx ⟨S,V ⟩

(I-Prod-CEx2)

⊢ v : (σ1 → τ2) [α 7→ τc ] v1 : σ1 ▶
Q
P

Valid (v v1) ⇓ v2 v2 : τ2 ▶
P
Q CEx ⟨S,V ⟩

v : (σ1 → τ2) ▶
P
Q CEx

〈

{|v1 |}σ1 ∪ S,V
〉

(I-Fun-CEx)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{|w |}β = {} (C-Base) {|v |}α = {v} if ⊢ v : τc (C-Abs) {| ⟨v1,v2⟩ |}(σ1∗σ2) = {|v1 |}σ1 ∪ {|v2 |}σ2 (C-Prod)

Figure 3. Inference rules for conditional inductiveness.

Counterexamples. Normally logical relations are only
used to prove that an invariant is inductive. However, we ad-
ditionally require counterexamples from failed inductiveness
checks, to drive our CEGIS-based invariant inference algo-
rithm. The second section of Figure 3 provides the logic for
refuting conditional inductiveness and generating counterex-
amples. This judgement has the form v : τ ▶P

Q CEx ⟨S,V ⟩,

which can be read as łvalue v is not conditionally inductive
at type τ with respect to properties P and Q , with induc-
tiveness counterexample witnesses S and V .ž Here the set S
contains values that satisfy P , the set V contains values that
falsify Q , and intuitively the values in V can be computed
using module operations given inputs from S .

As an example, consider the rule for values of abstract type
(rule I-A-CEx). Here, a value v of type α is not conditionally
inductive if it falsifies Q . The counterexample produced in-
cludes v in the set V (and returns the empty S), and hence
satisfies the judgemental invariant explained above. As an-
other example, a function is not conditionally inductive (rule
I-Fun-CEx) if there is an argument v1 in the relation that
causes the function to produce a result v2 that is not in the
relation. In that case, the function {|v |}σ is used to collect
all values of type α in v1 to put in the returned set S , since
they are the inputs that led to the result v2.

The completeness of our algorithm for inferring sufficient
representation invariants depends critically on these rules
for generating counterexamples. In particular, values in S

are added to the set V− of negative examples in order to
strengthen a candidate invariant, while values inV are added
to the set V+ of positive examples in order to weaken a can-
didate invariant. Therefore, the returned set S (V ) must be

non-empty whenever strengthening (weakening) is required,
which we prove as part of our completeness theorem.

Given this theory of counterexamples, one can appreciate
why handling higher-order functions is more challenging
than first-order functions. Extracting counterexamples from
a pair or other data structure requires a walk of the data
structure, and such a procedure is trivially complete. How-
ever, extracting counterexamples from functional arguments
requires execution of those arguments. That said, it is easy
to extract counterexamples from functional arguments when
the types of those functions do not include the abstract type
αÐin that case, there are no counterexamples and one could
safely return the empty set. Therefore, our theory and for-
mal guarantees extend naturally to modules that contain
functions such as maps, folds (other than those that pro-
duce values of the abstract type), zips, and iterators, where
function argument types refer to the element type of a data
structure, not the abstract type of the data structure itself.
The latter case actually appears surprisingly rare in practice,
but it does exist. For instance, the abstract type appears in
a higher-order position in a monadic interface. We explain
how we lift the first-order restriction in our implementation
in ğ4.

3.3 The Inference Algorithm

The invariant synthesis algorithm is parameterized by a veri-
fier Verify and a synthesizer Synth. A call Verify P returns
Valid when P v is true on all inputs of type τc . Otherwise, it
returns a counterexample v to the predicate. A call Synth
V+ V− returns a predicate P that returns true on the positive
examples (V+) and false on the negative ones (V−). V+ and V−
should not overlap; if they do then Synth will fail.
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1 Dependencies: A synthesizer Synth and a verifier Verify

3 Globals: An interface F = ∃α . τm , a module M = ⟨τc ,vm⟩

s.t. vm : τm [α 7→ τc ], and a spec φ : ∀α . τm → α → bool

5 (∗ The specification φ interpreted over the concrete type τc
6 ∗ and module implementation vm ∗)

7 let φm = (φ[τc ] vm )

9 (∗ Checks whether a candidate invariant Q is

10 ∗ conditionally inductive with respect to P ∗)

11 let CondInductive P Q = R where vm : τm ▶
P
Q

R

13 (∗ Checks if the candidate invariant is missing any value

14 ∗ that is constructible from V+ in a single step ∗)

15 let ClosedPositives V+ I =

16 match CondInductive V+ I with

17 | Valid 7→ Valid

18 | CEx ⟨_,V ⟩ 7→ CExV

20 (∗ Checks if the candidate invariant is not inductive,

21 ∗ or includes values that are not constructible ∗)

22 let NoNegatives I =

23 match Verify Suf
φ
M
[I] with

24 | Valid 7→ begin

25 match CondInductive I I with

26 | Valid 7→ Valid

27 | CEx ⟨S, _⟩ 7→ CEx S

28 end

29 | CExv 7→ CEx {v}

31 (∗ Returns a sufficient representation invariant ∗)

32 let rec Hanoi V+ V− =

33 match Synth V+ V− with

34 | Failure 7→ failwith "No predicate found"

35 | Success I 7→ begin

36 match ClosedPositives V+ I with

37 | CEx P 7→ Hanoi (V+ ∪ P) ∅

38 | Valid 7→ begin

39 match NoNegatives I with

40 | CExN 7→

41 if N \V+ = ∅ then

42 failwith "Counterexample N";

43 else

44 Hanoi V+ (V− ∪ (N \V+))

45 | Valid 7→ I

46 end

47 end

Figure 4. The Hanoi framework.

Figure 4 presents our invariant inference algorithm. To
execute the algorithm, a user invokes Hanoi (line 32) with
empty sets for V+ and V− respectively. Hanoi first generates
a candidate invariant I using Synth, given the current V+
and V− sets. It then attempts to produce a candidate invari-
ant that is visibly inductive relative to V+. That is the role

of the call to ClosedPositives (line 36). That function sim-
ply calls CondInductive, which uses the inference rules
in Figure 3. In the implementation these rules are executed
through interaction with the verifier Verify.
Since everything in V+is known to be constructible, the

setV of values that violate the candidate invariant must also
be constructible. Therefore, those values are returned from
ClosedPositives, and they are added to V+via a recursive
call to Hanoi (line 37). This forces future candidate invari-
ants produced by Synth to return true on elements in V .
Note that each timeV+ is augmented,V− is reset to the empty
set, so the next synthesized invariant will be the constant
true function, which is trivially visibly inductive. While we
maintain the invariant that the positive examples are con-
structible and so must be included in the final invariant,
negative examples are simply values that violate the current
candidate invariant (but may in fact be constructible).
Once the candidate invariant I is visibly inductive with

respect toV+,Hanoi checks for sufficiency and full inductive-
ness by calling NoNegatives at line 39. The NoNegatives
procedure interacts with Verify to check sufficiency and
calls CondInductive to check full inductiveness. If either of
these checks fail, NoNegatives will return counterexample
values that satisfy the current invariant Ð either a sufficiency
violation or the set S from an inductiveness counterexample.
Because I is visibly inductive, N \V+ can only be empty if
there is a sufficiency violation. In that case, we have found
a constructible violation of the specification φ, so Hanoi

terminates and provides this counterexample. If N \ V+ is
non-empty, Hanoi adds all of these values to V−, and Synth
will generate a stronger candidate invariant in the next itera-
tion. If a constructible counterexample is added to V−, it will
eventually be generated by ClosedPositives and moved to
V+. If both checks in NoNegatives succeed, then we have
found a sufficient representation invariant and it is returned.

3.4 Soundness and Completeness

We say that Verify is sound if (Verify P) = Valid implies
∀v : τc . (p v) ⇓ true. Further, Verify is said to be complete
if Verify(p) = v implies (p v) ⇓ false. Likewise, we say
that Synth is sound if for all sets V+ and V− of τc values,
(Synth V+ V−) = P implies ∀v ∈ V+ . (P v) ⇓ true and ∀v ∈

V− . (P v) ⇓ false. Further, Synth is said to be complete if
for all sets V+ and V− of τc values, whenever there exists a
predicate P : τc → bool such that ∀v+ ∈ V+ . (P v+) ⇓ true

and ∀v− ∈ V− . (P v−) ⇓ false, Synth always returns some

predicate P ′.

Definition 3.7 (Soundness). An inference system for rep-
resentation invariants is said to be sound iff whenever the
system generates a predicate I, it is indeed a sufficient rep-
resentation invariant, i.e. M : F |=I φ.

Definition 3.8 (Completeness). An inference system for
representation invariants is said to be complete iff whenever

7
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there exists a sufficient representation invariant I such that
M : F |=I⋆

φ, the system always generates (terminates with)
some predicate I : (τc → bool).

Theorem 3.9. If Verify is sound, then Hanoi ∅ ∅ is sound.

Theorem 3.10. If Verify and Synth are both sound and

complete, and τc is a finite domain, thenHanoi ∅ ∅ is complete.

The proofs can be found in the appendix of the full version
of this paper [17]. The soundness of Hanoi is straightfor-
ward and follows from the fact that an invariant is only
returned if it is both sufficient and inductive. The complete-
ness argument for finite domains is much more involved. As
mentioned earlier, it depends on several properties of the
rules for generating counterexamples in Figure 3. Further,
we must prove that the Hanoi algorithm always terminates.
Notice that the size of the set V+ monotonically increases
during the algorithm. WhileV− is reset to empty on some re-
cursive calls, this is only done whenV+ is augmented. Hence
the following is a rank function that is bounded from below
and decreases lexicographically with each recursive Hanoi
call, where |τc | denotes the number of values of type τc :

R(V+,V−) ≜
〈

|τc | − |V+ |, |τc | − |V− |
〉

4 Implementation

This section describes a variety of additional aspects of our
~5 KLOC OCaml implementation of Hanoi.

4.1 The Programming Language

We have implemented a pure, simply-typed, call-by-value
functional language with recursive data types. Numbers are
implemented as a recursive data type, where a number is
either 0 or the successor of a number. Each program includes
a prelude that may contain data type declarations and func-
tions over those data types. A program also contains a single
module declaring an abstract type together with operations
over that abstract type. Finally, a program includes a uni-
versally quantified specification that defines the intended
behavior of the module in terms of its operations.

4.2 Tackling Higher-Order Functions

While the theory presented in the previous section only sup-
ports first-order terms, our implementation allows modules
to include arbitrary higher-order functions. As mentioned
earlier, the key extension required is the ability to extract
counterexample values of the abstract type from functions.
Here we discuss how our implementation does that.
First, consider a natural extension to the SET interface

from ğ2 to include a map function.

1 module type HOSET = sig

2 include SET

3 val map : (int -> int) -> t -> t

4 end

Notice that while map is a higher-order function, the type of
the higher-order argument does not involve any occurrences
of the abstract type t. The same is true of iter, zip, and many
other variants. Consequently, if, during invariant inference,
(map f v) fails an inductiveness check on some candidate
representation invariant, the counterexample values that
represent the łreasonž for this failure will never come from
f . More generally, when the abstract type does not appear in
a higher type τ , the value with type τ cannot contain coun-
terexamples. Our implementation therefore simply ignores
such higher-order values when extracting counterexamples,
just as it ignores ordinary base types such int.

Now consider a further extension that includes a fold.

1 module type FSET = sig

2 include HOSET

3 val fold : (int -> t -> t) -> t -> t -> t

4 end

Here, fold contains a function argument with a type includ-
ing t. The fold might be implemented as follows.

1 let rec fold f a s =

2 match s with

3 | [] -> a

4 | hd :: tl -> f hd (fold f a tl)

Given a call fold f s1 s2 and a result s′ that does not sat-
isfy the current candidate invariant, how do we extract the
counterexamples from the functional argument? The solu-
tion arises from reflecting back on the intuitive definition of
conditional inductiveness: łif clients supply values in P then
the module implementation should supply values in Q .ž In
the higher-order case, there are simply more ways for client
and implementation to interact across the module boundary.
Specifically,the implementation supplies a value to the client
when it calls a function argument, and the client supplies a
value to the module when it returns from such a function.
Fortunately, a mechanism already exists for tracking such
boundary crossings in the general case: the higher-order
contracts of Findler and Felleisen [9].

Therefore, our implementation extracts counterexamples
through higher-order contract checking. The first-order case
is straightforward. For example, when the type is t -> t, we
generate a contract P -> Q to check that arguments satisfy
P and results satisfy Q , and we log situations where P is
satisfied by an argument butQ is violated by the result. This
is a direct implementation of the rule I-Fun-CEx in Figure 3.

For a type such as (int -> t -> t) -> t -> t -> t, we
simply extend the idea, giving rise to the following contract.

(any_int -> Q -> P) -> P -> P -> Q

As per usual, all negative positions must satisfy P and the
positive ones Q . Then contract checking is used to identify
runs that satisfy all of the P checks but fail a Q check. In
that case, if S is the set of values that satisfy P and v is

8
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the value that violates Q , then the extracted inductiveness
counterexample is ⟨S, {v}⟩.

With this extension,Hanoi is trivially sound, for the same
reason that the first-order algorithm is sound (the algorithm
checks for soundness just before termination). We conjecture
that Hanoi with this extension is also complete for finite
domains but have not proven it. However, in the next section,
we demonstrate empirically that our implementation can
infer representation invariants in the presence of higher-
order functions.

4.3 Verifier and Synthesizer

To implement Verify, we use a size-bounded enumerative
tester, which is unsound but effective in practice. To validate
a predicate with a single quantifier, we test the predicate on
data structures, from smallest to largest, until either 3000
data structures have been processed, or the data structure
has over 30 AST nodes, whichever comes first. To validate
predicates with two or more quantifiers, we instantiate each
quantifier with the smallest 3000 data structures with under
15 AST nodes.We further limit the total number of data struc-
tures processed to 30000. These restrictions limit the total
amount of time spent in the verifier at the cost of soundness
guarantees.

To implement Synth, we useMyth [20], adapting it slightly
in two ways. First, we modified it to return a set of candi-
date invariants, instead of just one. Doing so permits the
caching of synthesis results described earlier. Second, we
had to manageMyth’s requirement for trace completeness.
Trace completeness requires that whenever we provide an
input-output example ⟨x,y⟩ for a recursive data type, we
also provide input-output examples for each subvalue of x .
We generate input-output pairs for Myth by pairing each
element of V+ with true and each element of V− with false.
To handle trace completeness, we first identify all subvalues
of the values in V+ and V−. For each such subvalue that does
not already appear inV+ orV− we simply add it toV−, which
has the effect of mapping it to false. However, it could be
that these values are actually constructible; if they are, fu-
ture visible inductiveness checks will find this inconsistency,
and move the value to V+. However, this solution sometimes
does make our synthesis task more difficult, as these ad-
ditional values in V− can force candidate invariants to be
stronger than necessary. In such cases the synthesizer can
spend more time searching for a complex invariant, when a
simpler (though weaker) one would suffice.

4.4 Optimizations

To accelerate invariant inference, we have implemented two
key optimizations: synthesis result caching and counterexam-

ple list caching. Synthesis result caching reduces the number
of synthesis calls, and counterexample list caching reduces
the number of verification and synthesis calls. Since the bulk

(a)

(b)

Figure 5. Partial traces of synthesis and verification results
from a run of Hanoi without counterexample list caching
enabled.

Figure 6. Results of running a positive counterexample on
the trace shown in Figure 5(a).

of the system run time is spent in one or both kinds of calls,
reducing them can have a substantial impact on performance.

Synthesis Result Caching. When synthesizing, Myth

often finds multiple possible solutions for a given set of
input/output examples. Instead of throwing the unchosen
solutions away, we store them for future synthesis calls.
When given a set of input/output examples, before making a
call to Myth, we check if any of the previously synthesized
invariants satisfy the input/output example set. If one does,
that invariant is used instead of a freshly synthesized one.

Counterexample List Caching. Consider the trace of
Hanoi shown in Figure 5(a). In this example, Hanoi was
just called with v1 as the only positive example, and with
no negative examples. With no negative examples, the syn-
thesizer proposes λx .true as a candidate invariant and then
verification subsequently provides the negative counterex-
ample, v2, which then becomes the only negative example
in the next attempt at synthesis. This loop of proposing new
invariants, and adding their negative counterexamples to
the negative example set continues until λx .e3 is proposed,
which provides the positive counterexample, v5.

Next, according to the unoptimized algorithm, one should
begin a run with {v1,v5} as positive examples and no neg-
ative examplesÐsee Figure 5(b) for a partial trace of this
subsequent execution. Suppose that v5 satisfies the first two
synthesized invariants from the original run. In that case,
those invariants will simply be synthesized again as the first
two candidates of this new run, as shown in the figure. To
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avoid this recomputation, we cache these traces of synthesis
and verification calls. When we receive a new positive ex-
ample, we run it on the synthesized invariants in the trace,
as shown in Figure 6. Because λx .true and λx .e1 both re-
turn true on v5, we can skip the entirety of the trace shown
in Figure 5(b) and begin by synthesizing from the testbed
V+ = {v1,v5} and V− = {v2,v3}.

5 Experimental Results

We aim to answer the following research questions:

1. Can we infer sufficient representation invariants in prac-
tice?

2. What are the primary performance factors?
3. What effect on performance do our optimizations have?
4. How does our algorithm compare with prior work?

5.1 Benchmark Suite

We evaluate Hanoi on a total of 28 verification problems,
most of which require reasoning over list or tree structures.
We categorize them into the following four groups.

• VFA (5): Four modules from Verified Functional Algo-
rithms (VFA) [1] that have interfaces and specifications
over those interfaces, including tree- and list-based imple-
mentations of lookup tables and priority queues. We also
experimented with a second version of priority queues
that excludes the merge function.

• VFAExt (3): Three VFA modules with additional func-
tion(s) and corresponding specifications from the Coq [30]
standard library.

• Coq (14): Five tree- and list-based implementations of
data structures from the Coq [30] standard library. One
additional problem for each of the five by introducing
additional binary functions. Four more problems by ex-
tending interfaces with higher-order functions.

• Other (6): Six additional benchmarks of our own creation
requiring reasoning over lists, natural numbers, monads
and other basic data structures.

5.2 Experimental Setup

All experiments were performed on a 2.5 GHz Intel Core
i7 processor with 16 GB of 1600 MHz DDR3 RAM running
macOS Mojave. We ran each benchmark 10 times with a
timeout of 30 minutes and report the average time. If any of
the 10 runs time out then we consider the benchmark as a
whole to have timed out.

5.3 Inferred Invariants

Figure 7 presents our results. Overall, Hanoi terminated
with an invariant on 22 out of 28 benchmarks within the
timeout bound. The second column shows the sizes of the
inferred invariants, in terms of their abstract syntax trees.

Though our verifier is unsound, there was no effect on the
reliability of the system on our benchmark suite: 22 of the
22 inferred invariants are correct. Further, some of them are
quite sophisticated. For example, we synthesize a heap in-
variant, which requires that the the elements of each node’s
subtrees is smaller than that node’s label. We synthesize
invariants over lists including łmax element first,ž łno dupli-
cates,ž and łordered.ž If we allow the system to exceed the
30 min threshold, the system will infer a binary search tree
invariant as well.

In seven of the cases above, we run into a limitation of the
Myth synthesizer rather than our algorithm: Myth cannot
synthesize functions that require recursive łhelperž func-
tions. To bypass this restriction, we added a true_maximum
function (that finds the maximum element of a tree) to our
tree-heap benchmark and a min_max_tree function (that
finds the minimum and maximum elements of trees) to our
bst and red-black-tree benchmarks. We added a * next to the
names of benchmarks that we altered by providing a helper
function in this way (see Figure 7).

5.4 Primary Performance Factors

When benchmarks complete within the 30 minute bound,
most of the time is spent in verification. Indeed, for all but
two of the terminating benchmarks, the total time spent
synthesizing is under two seconds.

Three factors affect verification times significantly: (1) the
strength of the specification, (2) the complexity of the un-
derlying data structure, and (3) the presence of higher order
functions. First, it takes our verifier longer to validate a true
fact than to find a counterexample to a false one (validation
requires enumeration of all tests; in contrast, the moment a
counterexample is found, the enumeration is short-circuited).
Many candidate invariants imply weak specifications but
are not inductive. Hence weak specifications, ironically, are
quite costly, because many candidate invariants wind up
being sufficient (incurring a significant verification expense
each time), only to be thrown away later when it turns out
they are not inductive. Second, relatively simple data struc-
tures, like natural numbers and lists with numbers as their
elements, take less time to verify than more complex data
structures, like trees, tries, and lists with more complex ele-
ments. Third, like other complicated data types, the use of
higher-order functions increases verification time. There are
many ways to build a function, so enumeratively verifying
a higher-order function requires searching through many
possible functions.
However, the story is different for the complex bench-

marks that do not complete within 30 minutes. When we
ran Hanoi on our bst set benchmark, it completed in 78.4
minutes. Unlike the prior benchmarks, the majority of the
time (65%) was spent in synthesis. Moreover, 30% of the total
time was spent on the synthesis call that generated the final
invariant. This indicates that Hanoi is currently not gated
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Name Size Time (s) TVT (s) TVC MVT (s) TST (s) TSC MST (s)

/coq/bst-::-set* t/o t/o t/o t/o 97 t/o t/o t/o

/coq/bst-::-set+binfuncs 15 42.0 41.8 11 3.80 0.2 3 0.07

/coq/bst-::-set+hofs* t/o t/o t/o t/o 97 t/o t/o t/o

/coq/rbtree-::-set* t/o t/o t/o t/o 103 t/o t/o t/o

/coq/rbtree-::-set+binfuncs t/o t/o t/o t/o 103 t/o t/o t/o

/coq/rbtree-::-set+hofs* t/o t/o t/o t/o 103 t/o t/o t/o

/coq/maxfirst-list-::-heap 35 6.2 5.8 16 0.36 0.3 5 0.06

/coq/maxfirst-list-::-heap+binfuncs 35 7.4 7.0 16 0.44 0.3 5 0.06

/coq/sorted-list-::-set 49 22.9 22.0 21 1.05 0.7 7 0.10

/coq/sorted-list-::-set+binfuncs 49 17.3 16.0 21 0.76 1.2 8 0.15

/coq/sorted-list-::-set+hofs 49 101.3 99.6 21 4.74 1.6 8 0.20

/coq/unique-list-::-set 35 13.2 12.9 20 0.65 0.3 6 0.05

/coq/unique-list-::-set+binfuncs 15 15.7 15.6 8 1.95 0.1 2 0.05

/coq/unique-list-::-set+hofs 17 81.7 81.4 8 10.18 0.2 2 0.10

/other/cache 29 1.3 1.0 16 0.06 0.2 5 0.04

/other/listlike-tree 53 9.0 8.8 14 0.63 0.1 4 0.03

/other/nat-nat-option-::-range 23 1.6 1.5 12 0.12 0.1 4 0.03

/other/rational 28 8.6 7.8 8 0.97 0.7 2 0.35

/other/sized-list 45 15.4 15.0 20 0.75 0.3 6 0.05

/other/stutter-list 49 6.9 5.6 20 0.28 1.1 7 0.16

/vfa-extended/assoc-list-::-table 4 2.6 2.5 3 0.83 0.0 0 undef

/vfa-extended/bst-::-table t/o t/o t/o t/o 103 t/o t/o t/o

/vfa-extended/trie-::-table 4 15.5 15.4 3 5.13 0.0 0 undef

/vfa/assoc-list-::-table 4 1.9 1.9 3 0.63 0.0 0 undef

/vfa/bst-::-table 4 12.9 12.8 3 4.27 0.0 0 undef

/vfa/tree-::-priqueue* 47 65.7 53.6 54 0.99 9.6 15 0.64

/vfa/tree-::-priqueue+binfuncs* 47 79.4 64.5 54 1.19 12.4 15 0.83

/vfa/trie-::-table 4 17.7 17.6 3 5.87 0.0 0 undef

Figure 7. Information from running Hanoi on our benchmark suite. Name is the name of the benchmark. Size is the size of
the inferred invariant. Time is the time to run the benchmark from start to end. TVT is the total time spent verifying. TVC
is the total number of verification calls. MVT is the average time for a single verification call. TST is the total time spent
synthesizing. TSC is the total number of synthesis calls. MST is the average time for a single synthesis call. Benchmarks
marked with a * were provided an additional function to enable synthesis by Myth.

by the verifier, but by the synthesizer. Indeed, the implemen-
tation of bst set that includes binary functions like union and
intersection is actually much faster than that without union
and intersection, terminating within our 30 minute timeout.
Adding these functions makes the verification harder, but
Myth can use them to generate simpler invariants. Adding
helper functions that permit simpler invariants also makes
our implementation of a bst table verifiable in under 30 min-
utes.

Due to these limitations, we believe that a smarter synthe-
sizer would be able to find more invariants. To this end, we
built a prototype synthesizer that can generate more com-
plex types of functions. This synthesizer has similarities to
Myth as it is type-and-example directed and enumerative.
However, whereMyth can only synthesize simple recursive
functions, this alternate synthesizer can synthesize folds,
letting our synthesizer generate functions that require accu-
mulators. Our synthesizer performs comparably to Myth,
synthesizing invariants for the 20 benchmarks Myth that
can solve an average of 11% slower. However, our synthesizer

is also able to find the invariant for a binary heap (/vfa/tree-
::-priqueue) without requiring helper functions or functions
defined in the module in 185.4 seconds (55.8 seconds for
/vfa/tree-::-priqueue+binfuncs), while Myth fails.

5.5 Comparisons

Figure 8 summarizes the results of running of Hanoi,Hanoi
without optimizations, and our implementations of prior
approaches adapted to our setting.

Impact of Optimizations. The modes Hanoi-SRC and
Hanoi-CLC tested the impacts of our optimizations described
in ğ4.4.Hanoi-SRC runs the benchmarks with synthesis result
caching turned off. Hanoi-CLC runs the benchmarks with
counterexample list caching turned off.
Removing synthesis result caching does not have a large

impact on the majority of benchmarks as the majority of our
benchmarks spend relatively little time in synthesis. How-
ever, more complex benchmarks are able to enjoy the benefits
of this optimization.
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Figure 8. Number of benchmarks that terminate in a given
time. Hanoi is the full Hanoi tool. Hanoi-SRC is Hanoi with
synthesis result caching turned off.Hanoi-CLC isHanoiwith
counterexample list caching turned off. ∧Str is Hanoi us-
ing a conjunctive strengthening algorithm similar to that of
LoopInvGen. LA is Hanoi using a counterexample genera-
tion strategy similar to that of LinearArbitrary. OneShot
synthesizes based on the results of running the 30 small-
est values on the specification. All the tests that terminated
within the 30 minute timeout terminated within the first 10.

Counterexample list caching has significant impact on
complex benchmarks as they have more synthesis and ver-
ification calls. The synthesizer requires more input/output
examples to synthesize the correct invariant on complex
benchmarks, so saving time reconstructing the negative ex-
amples via counterexample list caching has great impact.

Comparison to∧Str. The∧Strmode simulates the Loop-
InvGen algorithm [21], a related data-driven system for in-
ferring loop invariants. When running ∧Str, if a candidate
invariant I1 is sufficient to prove the specification, but is not
inductive, the algorithm attempts to synthesize a new predi-

cate I2 such thatvm : τm ▶
I1∧I2
I1

Valid. In that case, I1 ∧I2
is considered the new candidate invariant. This process con-
tinues until either the conjoined invariants are inductive,
or they are overly strong so a new positive counterexample
is found, at which point the whole process restarts. Hanoi
outperforms ∧Str on all the benchmarks and solves 3 more
benchmarks within 30 minutes. The main downside of ∧Str
is that it can only add new positive examples in order to
weaken the candidate invariant after it has obviously over-
strengthened. Hanoi, in contrast, uses visible inductiveness
checks to eagerly weaken in a directed manner.

Comparison to LA.. LA mode simulates the LinearAr-
bitrary algorithm [31], which is used in a data-driven CHC
solver. There are two differences from Hanoi. First, LA tries
to satisfy individual inductiveness constraints, generated for
each function in the module, one at a time rather than all at

once. Second, rather than eagerly searching for visible induc-
tiveness violations, only full inductiveness counterexamples
are obtained. However, if a full inductiveness counterexam-
ple happens to also be a visible inductiveness counterexam-
ple then it is treated accordingly. Hanoi outperforms LA
on all the benchmarks and is able to solve 4 more bench-
marks within 30 minutes. While Hanoi checks eagerly for
positive counterexamples, LA finds them nondeterministi-
cally. Without performing the guided search through visible
inductiveness checks, the algorithm sometimes gets łstuckž
in holes of negative counterexamples. While the algorithm
does seem to emerge from these holes eventually, it takes
time.

Comparison to OneShot. TheOneShotmode uses łone
shot learningž rather than an interative CEGIS algorithm.
The OneShot algorithm runs the specification over the
smallest 30 elements of the concrete implementation type,
tagging each element as either positive or negative. Doing
so generates sets V+ and V−, which may be supplied to the
synthesizer. Whatever invariant synthesized is returned as
the result. (This algorithm only works when the specifica-
tion quantifies over a single element of the abstract type,
which is true for all but 7 of our benchmarks.) Running the
OneShot algorithm fails on all but one of our benchmarks,
coq/unique-list-set, and does so for a variety of reasons.
On some benchmarks,Myth times out, indicating that the
given synthesis problem was too hard, and Myth needed
to be provided fewer examples to find the right invariant.
On some benchmarks, Myth returns the wrong invariant,
indicating that the synthesis problem was underspecified,
and too few examples were given. Merely choosing some
fixed number of examples to build the invariant with is insuf-
ficient, that fixed number is too high for some benchmarks,
and too low for others.

6 Related Work

InferringRepresentation Invariants. To our knowledge,
the only prior work that attempts to automatically infer rep-
resentation invariants for data structures is the Deryaft

system by Malik et al. [15], which targets Java classes. There
are three key differences between systems. First, Deryaft re-
quires a fixed set of predicates (e.g., sortedness) as an input;
the invariants generated are conjunctions of these predi-
cates. In contrast, Hanoi can learn new predicates from a
general grammar of programs. Second, the conjunction of
predicates that Deryaft produces consists of those predi-
cates that hold on a fixed set of examples (generated from
test executions). There is no guarantee the final invariant
is inductive. In contrast, Hanoi employs a CEGIS-based ap-
proach to refining the candidate invariant, terminating only
when a sufficient representation invariant has been identi-
fied. Third, theDeryaft algorithm comes with no theoretical
completeness guarantee.
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Solving constrainedHorn clauses. Recently, several tools
have been developed to infer predicates that satisfy a given
set of constrained Horn clauses (CHCs). Inferring representa-
tion invariants can be seen as a special case of CHC solving,
since all of our inductiveness constraints are Horn clauses
(e.g., (I⋆ s1) ∧ (I⋆ s2) =⇒ (I⋆ (union s1 s2))). CHCs can in-
clude multiple unknown predicates in their inference prob-
lem, whereas there is only one in ours.

However, existing CHC solvers do not support inference of
recursive predicates, which is necessary to handle represen-
tation invariants over recursive data types. Several solvers
support only arithmetic constraints [7, 8, 31], while others
support arrays or bit vectors [5, 11, 13] as well. To our knowl-
edge, Eldarica [11] is the only CHC solver that supports
algebraic data types. However, Eldarica only computes
recursion-free solutions [11, Sec III C] and therefore can-
not express the sortedness or no-duplicates properties, for
instance.
Though they only handle arithmetic constraints, two of

these solvers employ a data-driven technique that is sim-
ilar to our approach, iterating between a synthesizer and
a verifier [7, 31]. Like our work, the approach of Zhu et al.
[31] leverages the observation that handling inductiveness
counterexamples ⟨x,y⟩ is easy when we know that x is
constructible. However, their approach simply checks if a
counterexample to full inductiveness happens to have this
property, while we exhaustively iterate through these coun-
terexamples until a candidate invariant is visibly inductive.
Intuitively, our approach minimizes the number of induc-
tiveness counterexamples that must be treated heuristically.
We show that this difference results in a significant perfor-
mance improvement, and we have proven a completeness
result for finite domains, while the approach of Zhu et al.
[31] lacks a completeness result. The approach of Ezudheen
et al. [7] does have a completeness result, and it applies to the
infinite domain of integers. However, they achieve this guar-
antee through the use of a specialized synthesizer designed
to handle inductiveness counterexamples directly, while our
approach can use any off-the-shelf synthesizer. There is also
no obvious analogue to our analysis of higher-order pro-
grams in this context.

Inferring inductive invariants. There have been many
techniques developed to infer individual inductive invariants
for program verification, for example an inductive invariant
for a loop or for a system transition relation. As discussed
in ğ2.2, module functions may consume or produce multi-
ple arguments or results of the abstract type, which results
in a more general class of inductiveness counterexamples,
whereas loops and transition relations, when viewed as func-
tions, consume and produce exactly one łstatež (the analogue
of an abstract value in our setting).

Hanoi is similar in structure to several data-driven invari-
ant synthesis engines [2, 7, 8, 10, 14, 18, 19, 21, 25, 26]. We

experimentally compared our algorithm to our implementa-
tions of the most closely related ones, adapted to the context
of representation invariant synthesis (ğ5.5). Broadly, the tech-
nical distinctions are similar to those described above for
data-driven CHC solvers. In particular: (1) our development
of visible inductiveness is novel; (2) aside from one tool [10]
that depends upon a special-purpose synthesizer to handles
inductiveness counterexamples directly, none are proven
complete; (3) they cannot process higher-order programs;
and (4) to our knowledge, none infer recursive invariants.

The ic3 algorithm for SAT-based model checking employs
a notion of relative inductiveness [4], which is closely related
to our notions of conditional and visible inductiveness. For-
mally, relative inductiveness is the special case of our condi-
tional inductiveness relation v : τ ▶P

Q Valid where P has

the form Q ′ ∧ Q and τ = α → α . The ic3 algorithm uses
relative inductiveness to incrementally produce an induc-
tive invariant, by iteratively identifying a state s that leads
to a property violation and then conjoining an inductive
strengthening of ¬s to the candidate invariant. Our notion of
visible inductiveness is also used to incrementally produce
an inductive invariant, but it works in the opposite direction:
we iteratively identify constructible values of the abstract
type and use them to weaken the candidate invariant. This
approach is a natural fit for our data-driven setting.

Automatic data structure verification. The Leon frame-
work [29] can automatically verify correctness of data struc-
ture implementations, but to do so, a user must manually
define an abstraction function, which plays a similar role to a
representation invariant. Namely, the abstraction function is
a partial function mapping an element of the concrete type
to an element of the abstract type.

There are many techniques for proving properties of heap-
based data structures, including shape analysis [24] and liq-
uid types [12]. These techniques can prove and/or infer so-
phisticated invariants, often of imperative code. However,
they are designed to tackle a different problem and do not
infer the inductive representation invariants that are needed
to prove modules correct.

7 Conclusion

We present a novel algorithm for synthesis of representa-
tion invariants. Our key insight is that it is possible to drive
progress of the algorithm towards its goal not by eagerly
searching for fully inductive invariants, but rather by search-
ing first for visibly inductive invariants. We have proven that
our algorthm is sound and complete, given a sound and com-
plete verifier and synthesizer, for a first-order type theory
with finite types. We also explain how to extend the algo-
rithm to modules containing higher-order functions, which
involves using contracts to validate and collect objects that
cross the module boundary. We evaluate our algorithm on
28 benchmarks and find that we are able to synthesize 22
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of the invariants within 30 minutes (and most of those in
under a minute). Our algorithm is defined independently of
the black-box verifier and synthesizers; as research in ver-
ifier and synthesizer technologies improve, so too will the
capabilities of our overall system. While the tool is currently
fully automated, we view this as a step towards an interac-
tive approach to helping users of proof assistants produce
correct representation invariants.
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